NXP产品应用

RF信号 ​优化信号链的电源系统:RF收发器

小编 2025-01-22 NXP产品应用 23 0

​优化信号链的电源系统:RF收发器

本信号链电源优化系列文章的第1部分讨论了如何量化电源噪声以确定其影响信号链器件的哪些参数。通过确定信号处理器件可以接受而不影响其所产生信号的完整性的实际噪声限值,可以创建优化的配电网络(PDN)。在第2部分中,该方法被应用于高速模数和数模转换器,证明将噪声降低到必要水平并不一定要提高成本、增加尺寸、降低效率。这些设计参数实际上可以在一个优化的电源解决方案中满足。

本文重点关注信号链的另一部分——RF收发器。本文将探讨器件对来自各电源轨的噪声的敏感度,确定哪些器件需要额外的噪声滤波。本文提供了一种优化的电源解决方案,并通过将其SFDR和相位噪声性能与当前PDN(当连接到RF收发器时)进行比较来进一步验证。

优化ADRV9009 6 GHz双通道RF收发器的电源系统

ADRV9009是一款高集成度射频(RF)、捷变收发器,提供双通道发射器和接收器、集成式频率合成器以及数字信号处理功能。这款IC具备多样化的高性能和低功耗组合,可满足3G、4G和5G宏蜂窝时分双工(TDD)基站应用要求。

图1.ADRV9009双通道收发器的标准评估板配电网络。此设置使用一个ADP5054四通道稳压器和四个LDO后置稳压器来满足噪声规格,并最大限度地提高收发器的性能。目标是改善该解决方案。

图1显示了ADRV9009双通道收发器的标准PDN。PDN由一个ADP5054四通道开关稳压器和四个线性稳压器组成。这里的目标是了解配电网络的哪些性能参数可以改善,同时产生的噪声不会降低收发器的性能。

如本系列文章所述1,2,为了优化PDN,量化ADRV9009对电源噪声的敏感度是必要的。ADRV9009 6 GHz双通道RF收发器需要如下五个不同的电源轨:

►1.3 V模拟(VDDA1P3_AN)

►1.3 V数字(VDDD1P3_DIG)

►1.8 V发射器和BB (VDDA_1P8)

►2.5 V接口(VDD_INTERFACE)

►3.3 V辅助(VDDA_3P3)

分析

图2显示了模拟电源轨(VDDA1P3_AN、VDDA_1P8和VDDA_3P3)的接收器1端口PSMR结果。对于数字电源轨(VDDD1P3_DIG和VDD_INTERFACE),我们利用信号发生器能够产生的最大注入纹波在输出频谱中未产生杂散,因此我们无需担心最小化这些电源轨上的纹波。调制杂散幅度用dBFS表示,其中最大输出功率(0 dBF)相当于50Ω系统中的7 dBm或1415.89 mV p-p。

图2.ADRV9009收发器的模拟电源轨在接收器1处的PSMR性能

对于VDDA1P3_AN电源轨,测量是在收发器板的两个不同分支上进行。请注意,在图2中,PSMR在<200kHz纹波频率时低于0 dB,表示这些频率下的纹波产生更高的相同幅度调制杂散。这意味着在200 kHz以下,接收器1对VDDA1P3_AN电源轨产生的最小纹波也非常敏感。

VDDA_1P8电源轨在收发器板上分为两个分支:VDDA1P8_TX和VDDA1P8_BB。VDDA1P8_TX电源轨在100 kHz时达到最小PSMR,约为27 dB,对应于100kHz纹波的63.25 mV p-p,产生2.77 mV p-p的调制杂散。VDDA1P8_BB在5 MHz纹波频率时测量约11 dB的最小值,相当于0.136 mV p-p的注入纹波产生的0.038 mV p-p杂散。

VDDA_3P3数据显示,在大约130 kHz及以下,PSMR低于0 dB,表示接收器1处的RF信号对来自VDDA_3P3的噪声非常敏感。该电源轨的PSMR随着频率提高而上升,在5 MHz达到72.5 dB。

总之,PSMR结果表明,在这些电源轨中,VDDA1P3_AN和VDDA_3P3电源轨噪声最令人担忧,贡献了ADRV9009收发器最大部分的耦合到接收器1的纹波量。

图3.ADRV9009收发器的模拟电源轨在接收器1处的PSRR性能

图3显示了ADRV9009模拟电源轨的PSRR性能。VDDA1P3_AN的PSRR在最高 1MHz时保持平坦,约为60 dB;在5 MHz时略有下降,最小值为46 dB。这可以被视为5 MHz的0.127 mV p-p纹波,其产生0.001 mV p-p杂散,该杂散与调制RF信号一起位于LO频率之上。

ADRV9009的VDDA1P8_BB电源轨的PSRR在5 MHz时达到约47 dB的最小值,而VDDA1P8_TX电源轨的PSRR不会低于约80 dB。在1 MHz以下的频谱中,VDDA_3P3的PSRR高于所示的90 dB。测量在90 dB时发生削波,因为最高1 MHz的最大注入纹波为20 mV p-p——这不够高,无法产生高于本振的本底噪声的杂散。该电源轨的PSRR高于所示的1 MHz以下的情况,因为随着频率提高,它在4 MHz时下降到76.8 dB,其最低值在10 kHz至10 MHz范围内。

与PSMR结果类似,PSRR数据表明,耦合到本振频率(特别是高于1 MHz)的大部分噪声来自VDDA1P3_AN和VDDA_3P3电源轨。

为了确定电源是否能够满足噪声要求,测量直流电源的纹波输出,并绘制一个100 Hz至100 MHz频率范围的波形,例如图4所示。在该频谱上增加一个覆盖层:调制信号上将出现边带杂散的阈值。覆盖的数据是通过在几个参考点将正弦纹波注入到指定电源轨而获得的,用以了解什么纹波水平产生边带杂散,如本系列的第1部分所讨论的。

图4至图6中所示的阈值数据是针对收发器最敏感的三个电源轨的。图中显示了不同DC-DC转换器配置、使能/未使能展频(SSFM)、通过LDO稳压器或低通(LC)滤波器进行更多滤波等情况下的电源轨频谱。这些波形是在电源板上测量,并留下了比噪声限值低6 dB甚至更多的裕量。

图4.为VDDA1P3_AN电源轨供电的LTM8063(不同配置)的输出噪声频谱,

以及该电源轨允许的最大纹波。

测试

图4显示了VDDA1P3_AN电源轨的杂散阈值,以及LTM8063 µModule®稳压器不同配置的实测噪声频谱。 如图4所示,在禁用展频(SSFM)的情况下,使用LTM8063为电源轨直接供电,在LTM8063的基波工作频率和谐波频率处产生超过阈值的纹波。具体说来,纹波在1.1 MHz时超过限值0.57 mV,表明需要后置稳压器和滤波器的某种组合来抑制开关稳压器的噪声。

如果仅增加LC滤波器(无LDO稳压器),则开关频率处的纹波刚刚达到最大允许的纹波——可能没有足够的设计裕量来确保收发器性能最佳。增加ADP1764 LDO后置稳压器并开启LTM8063的展频模式,可以降低整个频谱上的基波开关纹波幅度及其谐波,以及SSFM在1/f区域中引起的噪声峰值。 通过开启SSFM并增加LDO稳压器和LC滤波器,可以实现最佳效果,降低开关动作所引起的剩余噪声,给最大允许纹波留下约18 dB的裕量。

展频将噪声扩散到更宽频带上,从而降低开关频率及其谐波处的峰值和平均噪声。这是通过3 kHz三角波上下调制开关频率来做到的。这会在3 kHz处引入新的纹波,LDO稳压器会进行处理。

使能SSFM后,由此产生的低频纹波及其谐波在图5和图6所示的VDDA_1P8和VDDA_3P3输出频谱中显而易见。如图5所示,使能SSFM时LTM8074的噪声频谱为VDDA_1P8电源轨的最大允许纹波提供最小约8 dB的裕量。因此,满足此电源轨的噪声要求不需要后置稳压器滤波。

图5.为VDDA_1P8电源轨供电的LTM8074(SSFM开启)的输出噪声频谱,以及该电源轨允许的最大纹波。

图6.为VDDA_3P3电源轨供电的LTM8074(不同配置)的输出噪声频谱,以及该电源轨允许的最大纹波。

请注意电源轨对低频纹波的敏感性,因为此噪声可能在3.3 V供电的时钟中引起相位抖动。

图6显示了LTM8074 μModule稳压器不同配置的噪声频谱,以及3.3V VDDA_3P3电源轨的最大噪声要求。对于此电源轨,我们使用LTM8074 Silent Switcher®μModule稳压器来分析结果。仅使用LTM8074的配置(无滤波器或LDO后置稳压器)产生的噪声超过限值,无论是否使能展频模式。

两个备选配置的结果符合>6 dB裕量的噪声规格:未使能SSFM的LTM8074加上LC滤波器,以及使能SSFM的LTM8074加上LDO后置稳压器。虽然二者均以充足的裕量满足了要求,但LDO后置稳压器解决方案在此更有优势。这是因为VDDA_3P3电源轨还提供3P3V_CLK1时钟电源,因此1/f噪声的减少相对更重要——如果不予处理,这里的噪声可以转化为本振中的相位抖动。

图7.使用LTM8063和LTM8074 μModule稳压器的ADRV9009收发器优化PDN

优化解决方案

基于上述测试结果,图7显示了一种优化解决方案,当用在ADRV9009收发器板上时,它能提供>6 dB的噪声裕量。

表1显示了优化PDN与标准PDN的对比。组件大小减小29.8%,效率从66.9%提高到69.9%,整体节能0.5 W。

表1.ADRV9009优化PDN与当前PDN的比较

为了验证该优化电源解决方案在系统噪声性能方面的效果,我们执行了相位噪声测量。将图7中的优化解决方案与控制案例——ADRV9009评估板的工程版本,即使用图1所示PDN的AD9378评估板——进行比较。使用相同电路板,但采用图7所示的PDN,比较相位噪声结果。理想情况下,优化解决方案达到或超过数据手册参考曲线所示的性能。

图8.ADP5054与µModule器件的PSU之间的AD9378相位噪声性能比较,

测量条件:LO = 1900 MHz,PLL BW = 425 kHz,稳定性 = 8。

图8比较了使用标准ADP5054电源的AD9378评估板相位噪声结果与使用LTM8063和LTM8074电源的同一评估板的结果。相比于ADP5054电源解决方案,μModule电源解决方案的性能略优,高出大约2 dB。如图8和表2所示,由于外部本振使用了低相位噪声信号发生器,两种电源解决方案的测量结果均显著低于数据手册规格。

表2.相位噪声测量结果,LO = 1900 MHz

采用两种电源解决方案的收发器的SFDR测量结果如表3所示,两种方案的性能相当,除了LO = 3800 MHz,这种情况下ADP5054的开关纹波开始在载波信号输出频谱上产生调制杂散,如图9所示。

表3.ADRV9009收发器SFDR性能

图9.发射器1载波信号和电源开关频率引起的杂散频率。

测量条件:LO = 3800 MHz,Fbb = 7 MHz,–10 dBm。

结论

不同应用有不同要求,评估板的配电网络可能需要进一步改进或改变。量化信号处理IC噪声要求的能力为电源设计或只是优化现有电源解决方案提供了更有效的方式。对于ADRV9009之类的高性能RF收发器,在PDN中设置噪声注入以确定可容许多大电源噪声,有助于我们改进当前PDN的空间需求、效率和至关重要的热性能。请继续关注本电源系统优化系列的后续篇目。

作者简介

Pablo Perez, Jr.于2019年5月加入ADI公司,担任ADEF高级应用工程师。他的工作经验包括修改和评估不同应用领域(工业、电信、医疗、军事)的标准开关模式电源,以及线性稳压器、开关稳压器和电源管理IC的设计验证和样本评估。Pablo毕业于菲律宾奎松省卢塞纳市的Manuel S. Enverga University Foundation, Inc.,获得电子与通信工程学士学位。

John Martin Dela Cruz于2020年10月加入ADI公司,担任电源应用工程师。他主要负责航空航天和防务(ADEF)电源系统。他毕业于菲律宾大学(位于菲律宾奎松市迪里曼),获电子工程学士学位。

RF电路寄生信号如何降低,这8条规则收藏好了

RF电路布局要想降低寄生信号,需要RF工程师发挥创造性。记住以下这八条规则,不但有助于加速产品上市进程,而且还可提高工作日程的可预见性。

1

接地通孔应位于接地参考层开关处

流经所布线路的所有电流都有相等的回流。耦合策略固然很多,不过回流通常流经相邻的接地层或与信号线路并行布置的接地。在参考层继续时,所有耦合都仅限于传输线路,一切都非常正常。不过,如果信号线路从顶层切换至内部或底层时,回流也必须获得路径。

图1就是一个实例。顶层信号线路电流下面紧挨着就是回流。当它转移到底层时,回流就通过附近的通孔。不过,如果附近没有用于回流的通孔时,回流就要通过最近可用的接地通孔。

更远的距离会产生电流环路,形成电感器。如果这种不必要的电流路径偏移,碰巧又同另一条线路交叉,那么干扰就会更严重。这种电流环路其实相当于形成了一个天线!

图1:信号电流从器件引脚经过通孔流到较低层。回流在被迫流向最近通孔改变至不同参考层之前位于信号之下。

接地参考是最佳策略,但高速线路有时候可布置在内部层上。接地参考层上下都放置非常困难,半导体厂商可能会受到引脚限制,把电源线安放在高速线路旁边。参考电流要是需要在非DC耦合的各层或各网之间切换,应紧挨着开关点安放去耦电容。

2

将器件焊盘与顶层接地连接起来

许多器件在器件封装底部都采用散热接地焊盘。在RF器件上,这些通常都是电气接地,而相邻焊盘点有接地通孔阵列。可将器件焊盘直接连接至接地引脚,并通过顶层接地连接至任何灌铜。如有多个路径,回流会按路径阻抗比例拆分。通过焊盘进行接地连接相对于引脚接地而言,路径更短、阻抗更低。

电路板与器件焊盘之间良好的电气连接至关重要。装配时,电路板通孔阵列中的未填充通孔也可能会抽走器件的焊膏,留下空隙。填满通孔是保证焊接到位的好办法。

在评测中,还要打开焊接掩模层确认没有焊接掩模在器件下方的电路板接地上,因为焊接掩模可能会抬高器件或使其摇摆。

3

无参考层间隙

器件周边到处都是通孔。电源网分解成本地去耦,然后降至电源层,通常提供多个通孔以最大限度减少电感,提高载流容量,同时控制总线可降至内层。所有这些分解最终都会在器件附近完全被钳住。

每个这些通孔都会在内接地层上产生大于通孔直径自身的禁入区,提供制造空隙。这些禁入区很容易在回流路径上造成中断。一些通孔彼此靠近则会形成接地层沟,顶层CAD视图看不见,这将导致情况进一步复杂化。

图2两个电源层通孔的接地层空隙可产生重叠的禁入区,并在返回路径上造成中断。回流只能转道绕过接地层禁入区,形成现在常见的发射感应路径问题。

图2:通孔周围接地层的禁入区可能重叠,迫使回流远离信号路径。即便没有重叠,禁入区也会在接地层形成鼠咬阻抗中断。

甚至“友好型”接地通孔也会为相关金属焊盘带来电路板制造工艺要求的最小尺寸规格。通孔如果非常靠近信号线路,就会产生好像顶层接地空隙被老鼠咬掉一块一样的侵蚀。图2是鼠咬示意图。

由于禁入区由CAD软件自动生成,通孔在系统电路板上的使用又很频繁,因此先期布局过程几乎总会出现一些返回路径中断问题。

布局评测时要跟踪每条高速线路,检查相关回流层以避免中断。让所有可在任何区域产生接地层干扰的通孔更靠近顶层接地空隙是一个不错的方法。

4

保持差分线路的差分性

回流路径对信号线路性能至关重要,其应视为信号路径的一部分。与此同时,差分对通常没有紧密耦合,回流可能流经相邻层。两个回流必须通过相等的电气路径布线。

即便在差分对的两条线路不紧密耦合时,邻近与共享型设计限制也会让回流处于相同层。要真正保持低寄生信号,需要更好的匹配。差分组件下接地层的断流器等任何计划结构都应是对称的。

同样,长度是否匹配可能也会产生信号线路中的波形曲线问题。回流不会引起波形曲线问题。一条差分线路的长度匹配情况应在其它差分线路中体现。

5

RF信号线路附近没有时钟或控制线路

时钟和控制线路有时可视为没什么影响的邻居,因为其工作速度低,甚至接近DC。不过,其开关特性几乎接近方波,可在奇数谐波频率下生成独特的音调。

方波发射能源的基本频率虽然不会产生什么影响,但其锐利的边缘可能会有影响。在数字系统设计中,转折频率可估算必须要考虑的最高频率谐波,计算方式为:Fknee=0.5/Tr,这里的Tr是上升时间。

请注意,是上升时间,而不是信号频率。不过锐利边缘的方波也有强大的高阶奇数谐波,其可能只在错误频率下下降并耦合在RF线路上,违反严格的传输掩模要求。

时钟和控制线路应由内部接地层或顶层接地灌流(ground pour)与RF信号线路隔离。如果不能使用接地隔离信号,那么线路布线应确保直角交叉。因为时钟或控制线路发射的磁通线路会围绕干扰源线路的电流形成放射柱形等高线,它们将不会在接收器线路中产生电流。

放慢上升时间不但可降低转折频率,而且还有助于减少干扰源的干扰,但时钟或控制线路也可充当接收器线路。接收器线路仍可作为将寄生信号导入器件的导管。

6

使用接地隔离高速线路

微波传输带与带线大多数都与相邻接地层耦合。一些通量线路仍沿水平方向散发,并端接于相邻迹线。一条高速线路或差分对上的音调在下一条迹线上终结,但信号层上的接地灌流会为通量线路带来较低阻抗的终点,让邻近迹线不受音调干扰。

时钟分布或合成器设备路由出来、用于承载相同频率的迹线集群可能相邻而行,因为干扰源音调已经存在于接收器线路上。不过,分组的线路最终会分散。

分散时,应在分散线路之间提供接地灌流,并在其开始分散的地方灌入通孔,以便感应回流沿着额定回流路径流回。在图3中,接地岛末端的通孔可使感应电流流到参考层上。接地灌流上其它通孔之间的间隔不要超过一个波长的十分之一,以确保接地不会成为共振结构。

图3:差分线路分散处的顶层接地通孔为回流提供流动路径。

7

不要在噪声较大的电源层进行RF线路布线

音调进入电源层就会扩散到每个地方。如果杂散音调进入电源、缓冲器、混频器、衰减器和振荡器,就会对干扰频率进行调制。

同样,当电源到达电路板时,它还没有彻底被清空而实现对RF电路系统的驱动。应最大限度减少RF线路在电源层的暴露,特别是未过滤的电源层。

邻近接地的大型电源层可创建高质量嵌入式电容,使寄生信号衰减,并用于数字通信系统与某些RF系统。另一种方法是使用最小化电源层,有时更像是肥大迹线而不能说是层,这样RF线路更容易彻底避开电源层。

这两种方法都可行,不过决不能将二者的最差特性凑在一起,也就是既使用小型电源层,又在顶部走线RF线路。

8

让去耦靠近器件

去耦不仅有助于避免杂散噪声进入器件,还可帮助消除器件内部生成的音调,避免其耦合到电源层上。去耦电容越靠近工作电路系统,效率就越高。本地去耦受电路板迹线的寄生阻抗干扰较小,较短的迹线支持较小的天线,减少有害音调发射。

电容器安放要结合最高自共振频率,通常最小值、最小外壳尺寸、最靠近器件,以及越大的电容器,离器件越远。在RF频率下,电路板背面的电容器会产生通孔串连接地路径的寄生电感,损失大量噪声衰减优势。

9

总结

通过电路板布局评测,我们可发现可能发射或接收杂散RF音调的结构。要跟踪每一条线路,有意识地明确其回流路径,确保它能够与线路并行,特别是要彻底检查过渡。

此外,还要将潜在干扰源与接收器隔离。按照一些简单直观的规则降低寄生信号,可加速产品发布,降低调试成本。

相关问答

RF 是什么含义?

RF(射频识别)它是一种高频交流变化电磁波的简称。一种通信技术,可通过无线电讯号识别特定目标并读写相关数据,而无需识别系统与特定目标之间建立机械或光学...

数字 rf 接口是什么?

无线电射频接口数字rf接口的意思是为无线电射频接口。它是目前家庭有线电视采用的接口模式。RF的成像原理是将视频信号(CVBS)和音频信号(Audio)相混合编码后...

RF 优化中的 RF 代表什么意思?

RF是射频的意思。RF优化是无线射频信号的优化,其目的是在优化网络覆盖的同时保证良好的接收质量,同时网络具备正确的邻区关系,从而保证下一步业务优化时无线信...

灯具 rf 是什么?

RF信号也就是射频信号,RF信号灯就是专门发射射频信号的灯具。交变电流流过导体,都会在其周围产生交变。本实用新型涉及rf设备技术领域,具体为一种景观灯具的rf...

手机 rf 接口有什么用?

射频接口,(也叫RF接口,同轴电缆接口,闭路线接口)属于模拟信号接口,所有的电视都支持这个接口,闭路信号就是通过这个接口传送进电视的。所以是应用最广的。...

什么是RFCABLE(射频线)?

一般来说,特性阻抗的线缆50欧或75欧就可作为RFCABLE,从定义角度来讲的话,应该定义为:能够传输RF信号且基本不影响RF信号质量的电缆就是RFCABLE.常用的指标...

rf 盘点的原理?

1.RF盘点的原理是利用射频技术进行无线通信,通过发送和接收射频信号来实现对物品的识别和定位。2.射频盘点系统由读写器和标签组成,读写器发射射频信号,标签...

什么是 RF CABLE(射频线)?

一般来说,特性阻抗的线缆50欧或75欧就可作为RFCABLE,从定义角度来讲的话,应该定义为:能够传输RF信号且基本不影响RF信号质量的电缆就是RFCABLE.常用的指标...

rf 什么意思沉降观测?

RF(射频识别)它是一种高频交流变化电磁波的简称。一种通信技术,可通过无线电讯号识别特定目标并读写相关数据,而无需识别系统与特定目标之间建立机械或光学...

请问 rf 开关是什么?_住范儿家装官网

rf开关是射频开关,属有线电视网或通讯领域用信号开关,用于有线传输射频信号的通过控制,是由外壳及两只晶体二极管及辅助电路相连的输入、输出及控制...

猜你喜欢