从4G到5G,手机射频芯片十年之路
来源:内容转载自公众号「慧智微电子」,谢谢。
2011年巴塞罗那举行的世界移动大会(MWC 2011)中,时任中国移动董事长王建宙表示,2011年将是4G TD-LTE商用元年。4G两大通信标准TD-LTE和FDD-LTE在2011年全面正式商用。
到了2021年,通信协议10年一变,5G成为代表未来的通信标准。在正式商用两年之后,5G即达到了超过4亿的连接数。5G生态逐渐形成,蓬勃发展。 在过去十年中,无论对于已经基本固化的4G通信协议,还是仍在演进中的5G协议,射频前端方案都在不断演进。射频前端的“十年一大变,两年一小变”,演变出看似复杂的多种方案。MMMB PA、TxM、L-PAMiD、L-FEM……各种简写名词层出不穷。本文对过去10年手机射频前端方案做一个整理,和大家一起回顾射频前端方案的过去,讨论射频前端方案可能的未来。射频前端方案演进
“Phsase X”系列的出现
现在谈到手机射频前端方案,无不例外都会提到“Phase2方案”、“Phase7方案”、“Phase7LE方案”等名词,这些方案是怎么出现的呢? 一般射频前端方案由器件厂商、平台厂商及终端厂商三方共同定义开发完成。 图:参与射频前端方案定义的厂商 在2010年左右之前,手机平台方案并不像当前这么集中。除了MTK、高通及展讯外,ADI、TI、Agere、Infineon、Philips、Freescale、Renesas、Skyworks等公司,都提供过手机平台解决方案。由于当时平台方案分散,射频方案这个细分方向对射频技术要求高,所以并没有平台厂商可以将射频方案统一起来。在这个时期,射频方案定义的主导权主要在射频器件厂商,由射频器件厂商发起定义、平台适配和客户推广。 在2010年之后,MTK、高通、展讯及海思平台崛起,手机平台方案越来越集中。越来越集中的还不止是平台厂商,随着山寨机的没落,终端厂商也逐渐向头部聚集。平台厂商、终端厂商及器件厂商,都对射频前端器件“生态”的形成更加重视,能否形成器件统一的“生态”是新方案定义中非常重要的考虑点: 平台厂商: 平台厂商不断积累射频前端的定义能力,并期待将射频前端方案统一纳入到方案规划中,统一向客户提供一站式“turn-key”解决方案。射频前端愈加复杂,新的射频前端方案必须要完成复杂的平台适配才能完成应用,使得平台厂商在射频前端方案定义的话语权进一步增加。终端厂商: 期待实现不同供应商器件之间的灵活替换,降低供应风险。方案统一可以降低应用时的适配难度。器件厂商: 收敛统一的方案可降低多个方案带来的巨额开发和维护费用,降低生产成本。方案的统一降可低新器件的开发风险。由于以上考虑,MTK发起定义的“Phase X”系列射频前端方案受到终端厂商、器件厂商的支持,成为公开市场过去近10年主流的射频前端方案。MTK的“Phase X”系列方案伴随了整个4G的发展,占据整个4G市场约80%的市场份额,并且在5G时代依然是公开市场最为主流的方案。以下将对Phase系列方案进行详细讨论。 以上为公开市场方案定义的变化,还有一部分射频前端方案是直接由终端厂商发起定义的,这种方案出现在头部终端厂商中。如苹果iPhone手机、三星和华为的自研手机中所用的射频前端方案。自定义射频前端方案全年出货比例约占整体射频前端方案的20%以下,并且比较闭环。本文将主要讨论公开市场中通用的射频前端方案演进。Phase1:史前时代
严格来说,并没有Phase1方案的定义。
MTK的射频前端定义是从2014年的Phase2开始的。在Phase2推出之前,TD-LTE/FDD-LTE已经全面商用3年了,在这三年出现的方案一般称为Phase1方案。 Phase1方案并不统一,一般来说是最大程度的复用射频前端厂商3G时代的产品定义:与原来2G/3G重合的频段复用原来的pin脚;4G的新频段用单独分立的通路进行覆盖;再用天线开关将所有频段合并到同一根天线上。 下图为典型的射频前端方案,发射部分主要由三款芯片构成:图:荣耀6X射频前端方案框图(来源:Navian RF Devices / Modules For Cellular, 2016) 除了以上型号,在同一时期的Sky77621、Sky77753、RF7378等,都属于“Phase1”时代的芯片方案。这些方案主要由Skyworks、RFMD(现Qorvo)厂商定义开发。Phase2:顺应时代,成就经典
Phase2方案是MTK由2014年定义的第一代归一化4G射频前端方案,7年过去回头来看,Phase2方案的定义依然经典。用现在时髦的一句话说:Phase2方案,YYDS(永远滴神)。 如前文所述,在2G/3G时代,射频前端的方案并不统一,Skyworks、RFMD(现Qorvo)等公司时常会有缺货发生。不少国内创业公司在2011年前后,依靠RF9810、Sky77590等芯片缺货挖掘到了第一桶金。缺货对国内创业公司是机会,但对终端及平台厂商却是灾难:射频前端的缺货会影响到平台出货和终端生产。于是,MTK在2012到2013年左右开始着手定义Phase2方案。 Phase2方案的定义不仅仅考虑到了当前方案的统一,还考虑到了方案生态的可达成性、未来协议的演进、4G三模/五模的共存等等。Phase2对于Phase1的改动主要如下:Phase2将Phase1的2G PA,与ASM(Antenna Switch Module,天线开关模组 )整合,形成TxM(Transmitter Module,发射模组);将4G频段的PA整合,形成完整的4G MMMB PA(Multi-Mode, Multi Band Power Amplifier Module,MMMB PAM,习惯简称为MMMB PA或者MMMB)。 经过改进,Phase2方案有以下优势: 灵活性增强:由于2G PA的设计方法与3G/4G PA有大的不同, 2G PA与4G PA的分离可以带来设计的灵活性。同时为日后2G退网做好准备。2G PA一般采用SAW-less方案,输出不需要经过额外的SAW滤波器等,2G PA与ASM集成为TxM可以降低2G PA后端插损。供应商可针对性发挥优势:不同供应商在2G与3G/4G的技术积累与能力不同,分离后可以极大化的发挥不同供应商的优势。4G 频段的整合,为日后4G乃至5G频段的发展做好准备。 Phase2在定义时,还考虑到了不同运营商的兼容。除了定义全网通的4G MMMB PA芯片,支持GSM、WCDMA、TDS-CDMA、TD-LTE及FDD-LTE的5模方案外,还定义了只支持中国移动频段的GSM、TDS-CDMA、TD-LTE的3模方案芯片,这两颗芯片尺寸大小不同,但却可以共板替换,定义的相当巧妙。不过由于3模市场很快过去,全网通手机成为大势,MTK巧妙的兼容定义并未被大规模使用起来。国际厂商的Phase2的代表产品是Skyworks的Sky77916+Sky77643,以及RFMD(现Qorvo)的RF521X+RF5422。 国内厂商也在这个时代进行追赶。 方案归一化后,国内厂商开始加大投入,开发与Skyworks/Qorvo等国际厂商相同方案的产品。虽然产品定义和目标产品都是清晰的,但过去几年国内厂商和Skyworks/Qorvo等厂商的竞争中并不占优,直到2020年前,国内市场在4G Phase2市场的市占率仍小于10%。Skyworks/Qorvo等公司在国内竞争对手杀入后,仍然保持优势的原因是:国内厂商大多数采用“跟随战略”,即在Skyworks/Qorvo推出产品之后,快速进行拷贝和复制,推出功能类似的产品,然后靠低价格杀入市场。Skyworks/Qorvo等国际厂商性能更优:Skyworks/Qorvo等厂商有近20年的技术积累,国内厂商若采用相同的方案,无法在性能上实现超越(在相同方案中,目前综合性能仍然是国际厂商最优)。Skyworks/Qorvo成本更低:Skyworks/Qorvo等厂商采用IDM模式,有年20亿美金以上的销售额支持其形成规模优势,使其拥有更低成本(国内为Fabless模式,并且销售额小于国际厂商1到2个数量级)。Skyworks/Qorvo掌握知识产权:国内厂商采用同质方案的知识产权风险,让头部客户使用有顾虑。2020年以后,随着4G毛利逐渐降低,5G市场逐渐起来,国际厂商开始放弃对4G市场的占据,国内厂商得以机会在4G市场取得份额。但由于定价权依然在国际厂商手中,采用相同技术方案实现产品的国内厂商依然无法取得可观的毛利。 慧智微在2011年成立时即尝试采用创新的方案进行设计,取得性能、成本及知识产权优势。慧智微采用自有知识产权软件定义可重构方案实现的Phase2射频前端拥有更少硬件,并可通过软件调谐实现性能优化。目前已实现数亿片芯片出货。Phase3/5:完善方案,支持CA
Phase3及Phase5的定义在2015-2016年,也是全球4G建设最为火热的时候。除中国外,大部分运营商获得的频谱都是通过拍卖的方式获得,频谱资源珍贵,运营商一般无法获得连续较宽的频谱。相比于中国移动在4G时代B41获得的2575-2635MHz的70MHz带宽(进入5G后,中移动在B41/n41带宽将拓展至160MHz),国际运营商通常只有几MHz或者10几MHz信号带宽。为了提升用户体验,CA(Carrier Aggregation, 载波聚合)技术开始被大家关注。 CA技术是LTE-A中的关键技术,可以将2~5个LTE成员载波(Component Carrier,CC)聚合在一起,实现最大100MHz的传输带宽,有效提高了上下行传输速率。 按照上下行CA的功能不同,CA可分为下行CA(DL-CA,Down Link CA)及上行CA(UL-CA,Up Link CA)。按照载波频段的不同,CA可分为带间CA(Inter Band CA),及带内CA(Intra Band CA)。同时,带内CA又有连续与非连续之分。图:LTE载波聚合示意图 CA方案较为复杂,不同细分场景和不同的CA组合需要有不同的方案来响应。MTK先后定义了Phase3及Phase5来支持不同的CA场景。Phase3可以支持到2下行CA及带内上行CA;Phase5利用多工器的引入 ,又将CA能力提升到了3下行CA及带间上行CA,不过PA后端插损增加,对PA输出功率的要求提升。由于分立方案实现CA较为复杂, Phase3及Phase5作为完整射频前端方案并未形成大规模生态。CA市场并非全球市场,对CA能力有强需求的主要是海外高端手机,在Phase6 PAMiD方案定义完成后,这些手机快速转向了PAMiD方案,所以Phase3/Phase5也没有形成对Phase2的取代。 在MTK的定义中,并没有“Phase4”方案,原因是华人社会对数字“4”的避讳。据说MTK对“Phase4”的跳过,也让Qorvo/Skyworks等国际厂商了解到了“4”这个数字在中文发音的额外含义,使国际厂商在产品命名中的数字使用也更加慎重。Phase6/Phase6L:进入PAMiD,依然经典
在分立方案开发完成后,国际大厂开始向PAMiD深度布局,PA和滤波器厂商开始整合:2014年,Skyworks宣布与松下组建合资公司;2015年,RFMD与Triquint合并,成立Qorvo公司;2016年,高通宣布与TDK建立新的合资公司RF360。 PAMiD的全称是PA Module integrated with Duplexer,PA滤波器集成模组。在这个模组中,同时集成了PA模组与滤波器组,也集成了天线开关等。PAMiD集成度高,链路插损小,使用简便,是高端手机的首选方案。iPhone从iPhone4时代,即开始采用PAMiD方案,方案来自于Avago(现Broadcom)、Skyworks、Triquint/RFMD(现Qorvo)等厂商。 虽然射频前端厂商在2016年之前就在iPhone等手机上应用PAMiD方案,每家厂商也都有自己的方案在推广,但公开市场一直缺少统一定义,PAMiD方案在公开市场并没有很好的应用。 MTK在2016年推出PAMiD方案Phase6定义,随后又进行成本优化,去掉冗余载波和滤波器,升级到更贴合中国市场的Phase6L(Phase6 Lite),Phase6L也在公开市场的PAMiD方案中取得成功。在MTK Phase6/Phase6L PAMiD方案成功定义的2016年前后,MTK先后发布中高端Helio P系列以及旗舰Helio X系列SoC,准备与高通在旗舰市场一决高下。但随着手机终端厂商将MTK Helio X10芯片应用于千元档位手机,MTK SoC平台的旗舰之路遇阻,随后MTK宣布放弃旗舰平台Helio X的开发。MTK所定义的Phase6/Phase6L PAMiD射频前端方案,与当时MTK SoC平台所处的千元机市场无法匹配。 虽然MTK平台冲击高端受限,也不妨碍MTK所定义的PAMiD射频前端方案成功。MTK所定义的Phase6/Phase6L射频前端方案,先后在海思、高通等其他平台方案中量产。即使当时MTK平台没有冲向高端,但MTK所定义的射频前端生态也在高端手机市场量产,MTK射频前端的定义能力及号召能力可见一斑。Phase7/Phase7L/Phase7LE:5G的开门红
5G对全世界来说都是新的。 5G频段是新的,标准是新的,甚至需求也是不断变化的。在需求未清晰的情况下,5G早期的方案也差别很大。高通、华为海思、村田、Qorvo及Skyworks等厂商,都在2018年推出过不同形式的方案。 MTK在对协议、运营商、终端客户及器件厂商的信息综合分析后,定义了Phase7方案。Phase7方案的Sub-3GHz部分主要由Phase6/Phase6L继承而来。在5G新增加的Sub-6GHz UHB部分,重点定义了支持n77/78/79频段、集成SRS开关的双频高集成模组。 Phase7方案的推出,很好的适应了5G的新需求,众多终端厂商的5G射频前端方案快速切换至Phase7方案。 MTK将5G平台方案取名“天玑”,并发布1000、800、700系列,布局5G高、中、低端市场。由于5G完整方案的推出,MTK平台在5G大有斩获。下图为MTK平台近一年市占率增长情况,在2021年Q2,MTK平台出货市占率达43%,比其他第三方平台(高通、展锐、三星)之和还要多。图:智能手机SoC平台出货占比(2020 Q2及2021 Q2,来源:Counterpoint)在推出第一代Phase7之后,MTK快速定义Phase7L(Phase7 Lite)、Phase7LE(Phase7L Enhancement,Phase7L增强版),适应5G市场的快速变化需求。Phase7/Phase7L/Phase7LE各代之间的演进关系如下图所示。Phase7主要应对初期的5G应用,基于Phase6增加了5G的支持,包括:Sub-3GHz PA进一步提升功率及线性,以支持5G高功率、高阶调制的需求;天线开关复杂度升级,以应对5G对SRS切换、MIMO、智能天线切换的需求;方案提升了eLNA的重要性,定义了集成eLNA、RX filter和Switch的L-FEM产品形态。Phase7L基于快速发展的5G需求,进行了迭代,包括:Sub-3GHz进一步提高集成度,在PAMiD产品形态中加入主集接收LNA,形成L-PAMiD产品形态。Phase7LE随着5G需求趋于收敛应运而生,预计将成为未来主要方案:UHB从1T1R L-PAMiF及1R L-FEM方案,演进至1T2R/2R的产品方案,进一步提升集成度;继续优化模组内开关、EN-DC支持、双工器等功能,进一步减少模组外围器件需求,达到整体方案的高性能和简洁。随着5G应用的推进,5G射频前端方案也开始收敛。不止是MTK平台,高通及展锐平台的方案也统一至Phase7系列方案。值得一提的是,高通自有品牌的最新5G UHB射频前端产品,也逐渐向MTK所定义Phase7系列方案靠拢。Phase7系列成为又一个经典方案。 得益于深厚的技术积累,慧智微快速响应了MTK Phase7系列方案的定义。慧智微于2019年12月,作为国内首家射频前端公司推出了兼容于Phase7的UHB 高集成L-PAMiF及L-FEM模组,并在2020年实现包括国际头部终端厂商在内的数十款5G终端量产。 慧智微在5G的突出成果也得到了国内及国际行业组织的认可,工信部“中国芯”将2020年重大创新突破产品奖颁发给了慧智微,5G全球推动组织GTI将2021年度荣誉奖授予慧智微。慧智微分别作为国内的首家射频前端公司,得到了以上两个奖项。在2021年9月,慧智微被高通评选为“2021 5G生态最值得关注的十大新锐创业企业”。 2021年4月,慧智微Phase7LE高集成1T2R UHB L-PAMiF及2R L-FEM模组客户送样,2021年9月产品正式量产,慧智微实现5G新方案产品持续领先推出。Phase5N:虽非官方定义,但却顺理成章
虽然Phase3、Phase5作为完整方案并未成为全球性的大节点,但Phase3、Phase5定义下所产生的个别芯片在日后方案中有了举足轻重的作用:Phase3时代定义的TxM,可以很好的支持5G时代的多天线场景;Phase5时代因为CA方案中后端引入四工器、Diplexer等插损增加,将Phase2 MMMB PA的功率提升了1dB,这提升的1dB受到了终端厂商的欢迎,可以用来抵消部分应用中PA后端过大的插入损耗,部分厂商直接将提升功率版的MMMB PA称为“Phase5 PA”。 5G到来之后,头部终端厂商主导将Phase5 MMMB PA增加支持5G NR信号的定义,被业界称之为Phase5N(“N”代表支持5G NR)PA,基于这颗MMMB PA所构建起来的5G方案也称之为“Phase5N方案”。由于大家对Phase2/5 MMMB PA相当熟悉,Phase5N PA只是在原来的基础上增加了5G NR信号支持,pin脚等未做修改,这颗物料也顺理成章的得到大家的接受。Phase5N 5G方案中,Phase5N MMMB PA只是对MTK 5G方案的Sub-3GHz部分做了修改,在Sub-6GHz UHB部分依然沿用MTK的定义。Phase5N方案与MTK所定义Phase7/7L/7LE中PAMiD/L-PAMiD的替代关系如下:不过需要说明的是,Phase5N并不是MTK的定义。到目前为止,MTK还没有正式推出过分立5G NR的射频前端方案定义。MTK官方的5G方案,依然是集成的PAMiD/L-PAMiD方案。Qorvo、Skyworks也没有响应Phase5N方案,而是推广单价更高的PAMiD/L-PAMiD产品。当前Phase5N产品全部由国内厂商提供。图:射频前端方案的“两年一个大节点”射频前端方案的未来
过去10年,平台深度参与射频前端方案的定义,安全保障了在4G的大规模商用以及5G新协议的快速部署。未来射频前端方案将演进到什么方向呢? 猜测有以下几个可能的趋势:射频前端方案继续强调“生态” 生态的形成会带来良好的质量,合理的价格,安全的供给。有良好生态的射频前端方案将继续是终端厂商的优先选择。头部终端厂商深度参与规格定义与产品定制 目前头部终端厂商越来越集中,并且对射频前端的理解能力也越来越强。除了苹果、三星、华为之外,国内的OPPO、vivo、小米及荣耀也都已经具备射频前端方案的定义能力。未来头部终端厂商将深度参与到射频前端产品定义中来。高集成模组化是大方向 受限于可集成化小型SAW/BAW滤波器及双工器,国内厂商现在还无法在Sub-3GHz提供PAMiD及L-PAMiD方案。随着越来越多优秀公司的投入,一旦滤波器及双工器供应解决,国内厂商有望实现PAMiD及L-PAMiD模组产品实现突破。核心技术为王 只有掌握核心差异化的技术,才有机会在归一化生态的产品竞争中获胜,才有机会深度参与到头部客户的差异化定制中来。未来竞争将更加激烈,更考验厂商的核心技术能力。结语
射频前端芯片行业是一个备受关注的行业,本文尝试回顾过去十年手机射频前端方案的发展,提供一些信息供参考讨论。射频前端芯片行业也是一个快速变化的行业,射频前端方案与通信协议息息相关, “十年一大变,两年一小变”是这个行业过去几年发展的规律。 观往知来,只有了解射频前端的过去,才能把握射频前端的未来。慧智微电子期待与你一起了解过去,开创未来。说明:部分图片来自网络及公开渠道。 附,文中部分简称名词解释及框图:*免责声明:本文由作者原创。文章内容系作者个人观点,半导体行业观察转载仅为了传达一种不同的观点,不代表半导体行业观察对该观点赞同或支持,如果有任何异议,欢迎联系半导体行业观察。
今天是《半导体行业观察》为您分享的第2830内容,欢迎关注。
晶圆|集成电路|设备|汽车芯片|存储|台积电|AI|封装
MTK平台手机生产流程简述:射频校准与综测,建议收藏
一部手机的生产流程大致如下所示:
1. FLASH烧录
一部正常工作的手机,除了要有硬件、结构件外,还必须要有软件支持。手机下载软件一般是在FLASH芯片贴片前将程序烧录在芯片中,或者等到贴片完成后采用在线下载。
在线下载方式的优点是灵活,如贴片完成后,或已装成整机后,需对软件进行升级,该方式就比较适合。但在大批量生产过程中,芯片烧录方式则效率更高。对于一款手机,如果用在线方式下载程序,需要的时间是10分钟,改用芯片烧录方式下载同样的程序,只需约3-4分钟。
同时,在芯片烧录过程中,对该器件具有检测作用。如某款手机,在生产初期,手机软件采用在线下载的方式,发现有少量手机不能正常下载,换FLASH后正常。在第二次生产时,改用芯片烧录方式下载软件,烧录过程中发现有2%的FLASH不正常。通过这种方式,可以将不良FLASH检查出来,避免在帖片后,才发现器件不良问题,减少了手机维修成本。
SMT贴片
2. 板号写入
手机主板上有中央处理器和存储器,贴片完成后,在主板上贴上一个条码,作为板号(主板的唯一编号Barcode),并通过计算机、扫描仪和数据线将板号写入主板的存储器中。 板号能正确写入,表明手机系统连接器输入输出电路基本正常。在后续的测试中,该板号与测试结果相联系,通过板号可以查询生产过程的测试记录。
3. 主板测试
与传统的ICT测试有区别的是手机测试无法提供大量的测试点。但手机主板本身包括了电源管理电路、射频收发电路、基带信号处理芯片、中央处理器、存储器、电源输入口、显示接口、键盘等电路,接近一个完整的系统,可以用其接口电路对其进行测试。主板测试主要包括以下几个部分:关机漏电流、电池校准、充电测试、键盘电路测试和音频电路测试、振动和振铃电路测试。测试完成后,写入该工位的生产测试信息。 在主板测试项目中,需要有测试点、测试夹具、计算机、可控双路输出电源、可控三用表电表、数据线、GPIB卡、GPIB线和生产测试程序的配合。在生产初期,可以测试全部的项目;在生产稳定后,可根据故障统计,优化测试项目以加快测试速度。该测试工位的设置,可以将贴片造成的不良品检测出来,从而提高校准测试工位的效率。
4. 主板校准
主板校准主要包括发射机和接收机的射频指标校准。发射机校准包括:APC校准、包络调整、AFC频率补偿校准、温度补偿校准等。接收机校准包括:AGC校准、RSSI校准等。主板校准是手机生产测试的核心,手机的各项性能指标主要依靠校准工位调整参数,使之满足产品标准。
MTK平台手机校准
校准的项目有哪些? 手机校准主要是针对RF参数的校准,比如AFC、AGC、APC,另外,还有电池ADC的校准、温度校准,要看不同平台的要求,校准的项目也不同,但是大体相同。
那什么是AFC、AGC、APC、ADC呢?
AFC:保证手机时钟频率与网络时间频率同步APC:保证手机在不同功率控制等级发射的功率都在规定范围内AGC:调整手机的增益控制,保证手机接收的功率值控制在一定的范围内TXIQ:保证IQ调制信号的准确性ADC:电池电压校准,手机通过校准后,其充电电压和报警电压才能达到要求什么是校准?为什么要校准?
校准的简单原理就是:由于器件不一致、温度变化、器件老化等因素的影响,即使是基于同样的平台同样的设计,也会表现出不同的电性能。为了消除这种影响,每个手机在出厂之前都要对这些参数进行测量计算得到一些参数误差数据,并把这些误差数据存储到一定的存储介质(一般为EEPROM)里,在手机正常使用过程中,CPU会读取这些数据并利用一定的算法对需要补偿的参数进行补偿。在生产测试过程中,对需要补偿校正的数据测量计算并存入EEPROM里的过程,称之为校准。
我们继续回到生产测试的工位介绍……
5. 整机功能测试
在该工位,手机主板已组装成整机,测试人员需通过工程模式配合,检查手机主要功能是否正常。在大批量生产过程中,对测试的要求是高效率、低成本、可靠性。手机软件工程测试模式的应用,极大的提高了整机功能测试效率和覆盖率。手机工程测试模式就是利用手机软件,启动手机振铃、振动、键盘输入、音频环路、信号指示灯、显示器等单元工作,测试人员可以非常方便地检查该项功能。
为什么校准之后不立即终测,而要先整机功能测试?
从提高综合测试仪器利用率角度来考虑工位的设置,将整机功能测试,放在整机终测之前比较合适。在整机装配时,如组装键盘、机壳、LCD模块、听筒、主板等,难免会出现不良品。在功能测试时,该不良品被及时检查出,送到维修工位,而不是进入整机终测,这就避免了一部分手机的重复测试。
6. 整机综测
校准完成后的手机,其性能是否满足规范要求,或机壳装配是否对性能有影响,需通过综测来验证。手机通过数据接口接收测试程序指令,再通过射频接口与测试仪器相连接,就可以测试发射机的功率、包络、频率、相位、接收机灵敏度等指标。整机测试完成后,计算机向手机写入相应生产测试信息。
综测很重要
现在生产的相同型号手机虽然使用都是相同器件,但这相同器件还是有的一定的偏差,由此组合的手机就必然存在着差异,但这差异是在一定的范围,超出了就视为手机不良。 因此校准的目的就是将手机的这种差异调整在符合国标的范围,而终测是对于校准的检查,因为校准无法对手机的每个信道,每个功率级都进行调整,只能选择有代表性的(试验经验点)进行,所以校准通过的手机并不能肯定它是良品,只有通过终测检验合格的才算是合格产品。
终测测试项目
包括发射功率,功率时间包络,频率误差,峰值相位误差,开关谱(调制谱.切换谱),灵敏度
接收电平、接收质量和ACLR等。
备注:部分内容来源于网络,侵删
相关问答
长天m-87GPS是如何工作的,什么是NMEA输出语句?
答:长天M-87是基于MTKGPS晶片的GPS模块,集成了RF、基带部分,提供一个TTL电平串口输出,可方便和MCU等上位机进行集成;感度优于-159dBm,首次定位时间短;NME...
mtk2502和phy6202哪个好?
mtk2502和phy6202都好,PHY6202凭借杰出的电路设计和软件控制,包括控制时钟、多种休眠模式和动态电压调整,达到低功耗的完美表现。PHY6202集成天线开关、RFba...
一个路由器可以用多久?一个路由器可以带几台设备?
家用路由器一般寿命是3~5年左右。路由器常常都是24小时开机状态,时间一长,电子元器件就会加速老化。路由器已经出现故障的典型征兆是:进不去路由器的管理界面...
如何区分手机IC?
手机IC释义为半导体元件产品;分类为放大器、存储器、充电器IC等,包括集成电路等;手机IC就是应用在手机上面的半导体元件产品的统称。而手机芯片则是IC的一个分...
oppo手机换芯片要多久?
它是电子设备中最重要的部分,承担着运算和存储的功能。包括基带、处理器、协处理器、RF、触摸屏控制器芯片、Memory、无线IC和电源管理IC等。目前主要手机芯片...
手机芯片有多少零件?
它是电子设备中最重要的部分,承担着运算和存储的功能。手机芯片通常是指应用于手机通讯功能的芯片,包括基带、处理器、协处理器、RF、触摸屏控制器芯片、Memo...
三星处理器和高通处理器不同(三星处理器和高通处理器不同大吗...
都在说MTKyes,但不管是高通,还是联发科,苹果、华为、三星这头部大牌厂家都很...RF、PA等。反正处理器跟芯片的关系很微妙,没有一个官方的区分,但你中有我,我...
传苹果招大量工程师,要自研基带芯片,对此你有什么看法?
一直以来苹果在iPhone上都是采用高通提供的网络基带,但苹果在近年逐步去高通化,并最终在去年与高通翻脸,今年的新款iPhone已经全部采用英特尔的基带了,而深谙...
手机芯片怎么认识?
手机芯片是一种集成电路,用于控制和执行手机的各种功能和任务。具体来说,手机芯片通常包括处理器、图形处理器、无线通信模块、存储器控制器等多个功能模块。...
怎么查看手机芯片型号-ZOL问答
问题三:高手们,请问如何查询手机的芯片型号国产机GSM系列手机主要可分为MTK、ADI、TI、AGERE、PHILIPS、INFINEON、SKYWORKS、SPREADTRUM八大平台:一、MT...